
Типовой расчет по физике, 1 курс, 2 семестр, 14 вариант

Задача 2-2

Условие

Однородный тонкий вертикальный стержень длины l, движущийся поступательно в плоскости рисунка с горизонтальной скоростью V_0 , налетает на край массивной переграды. После удара стержень вращается вокруг оси O, перпендикулярной плоскости рисунка. Ось вращения стержня совпадает с ребром преграды и проходит через точку удара стержня о преграду. Потерями механической энергии при вращении стержня после удара пренебречь.

$$l = 1_{\rm M}, \quad l_1 = 0.2l, \quad V_0 = 0.4V_{om}.$$

Сразу после столкновения центр масс стержня имеет ту же скорость, что и до столкновения. Определим расстояние от центра масс до оси вращения: $r = \frac{l}{2} - l_1$. Момент инерции стержня относительно оси, проходящей через его центр - $\frac{ml^2}{12}$.

Для оси O он будет равен $I=\frac{ml^2}{12}+mr^2$. Сразу после столкновения угловая скорость стержня равна $\omega_0 = \frac{V_0}{r}$. Кинетическая энергия стержня сразу после столкновения равна

$$E_{\kappa} = \frac{I\omega_0^2}{2}.$$

Выберем за нулевой уровень потерциальной энергии уровень, на котором находится ось О. Тогда на этом уровне потенциальная энергия стержня будет равна нулю, а в исходном положении она равна

$$E_{\pi} = \frac{mgl}{2} - mg(l - l_1).$$

Положим ω_{0m} - минимальная начальная угловая скорость, при которой возможно второе соударение. Тогда:

$$\frac{I\omega_{0m}^{2}}{2} + \frac{mgl}{2} - mg(l - l_{1}) = 0.$$

Из полученного соотношения выразим ω_{0m} :

$$\omega_{0m} = \sqrt{\frac{mgl - 2mgl_1}{I}}.$$

Так как $\omega_0=\frac{V_0}{r}$, то $V_{0m}=r\omega_{0m}$. Когда стержень повернут на угол φ , его потенциальная энергия равна

$$E_{\Pi} = \left(\frac{mgl}{2} - mg(l - l_1)\right) \cdot \cos \varphi.$$

Найдем φ_m :

$$\left(\frac{mgl}{2} - mg(l - l_1)\right) \cdot (\cos \varphi_m - 1) = \frac{I\omega_0^2}{2} \Rightarrow \varphi_m = \arccos\left(1 + \frac{I\omega_0^2}{mgl - 2mg(l - l_1)}\right)$$

Запишем полученные величины:

$$\begin{cases} V_{0m} = r \sqrt{\frac{gl - 2gl_1}{\frac{l^2}{12} + r^2}} \approx 1.748 \text{м/c}, \\ \omega_0 = \frac{0.4 \cdot V_0 m}{r} \approx 2.331 \text{c}^{-1}, & \text{, где} \quad r = \frac{l}{2} - l_1 \\ \varphi_m = \arccos\left(1 + \frac{\omega_0^2 \left(\frac{l^2}{12} + r^2\right)}{2gl_1 - gl}\right) \approx 0.574. \end{cases}$$