Залача № 5.

Электрон, прошедший ускоряющую разность потенциалов U = 50B, попадает из вакуума в металл, внутренний потенциал которого $\varphi = 5B$. Найдите показатель преломления металла n_a для электронной волны де Бройля.

Решение:

Показатель преломления для дебройлевской волны электрона равен:

$$n_e = \frac{v_e}{v_c} \tag{1}$$

где $v_{_{\theta}}$, $v_{_{c}}$ - фазовые скорости дебройлевской волны в вакууме и среде соответственно.

Учитывая, что фазовая скорость равна $v_{\phi}=\frac{\omega}{k}$, а $k=\frac{2\pi}{\lambda}$, где λ - дебройлевская длина волны, получим:

$$n_e = \frac{v_e}{v_c} = \frac{k_c}{k_e} = \frac{\lambda_e}{\lambda_c} \tag{2}$$

По определению длина волны де Бройля:

$$\lambda_{\scriptscriptstyle E} = \frac{2\pi\hbar}{p} \tag{3}$$

где р – импульс электрона.

В вакууме кинетическая энергия электрона была равна $K_{\scriptscriptstyle 1} = eU$, его импульс:

$$p_1 = \sqrt{2mK_1} = \sqrt{2meU} \tag{4}$$

Дебройлевская длина волны электрона в вакууме:

$$\lambda_{s} = \frac{2\pi\hbar}{\sqrt{2meU}} \tag{5}$$

В металле энергия электрона увеличится на величину $e \varphi$. На рисунке 1 представлены графики зависимости $\varphi(x)$ и $U(x) = -e \varphi(x)$. Из рисунка справа ясно, что $K_2 = K_1 + e \varphi = e(U + \varphi)$. Тогда длина волны де Бройля электрона в металле:

$$\lambda_c = \frac{2\pi\hbar}{\sqrt{2me(U+\varphi)}}\tag{6}$$

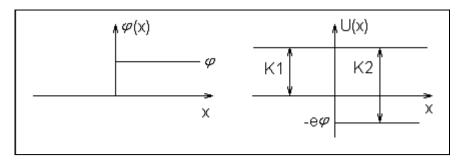


Рисунок 1

Используя (2), найдём показатель преломления:

$$n_e = \frac{\lambda_e}{\lambda_c} = \sqrt{\frac{U + \varphi}{U}} = \sqrt{1 + \frac{\varphi}{U}}$$
 (7)

Подставляя числовые значения, получим:

$$n_e=1.05$$

Ответ:

$$n_e = \sqrt{1 + \frac{\varphi}{U}}$$

$$n_e = 1.05$$