ВОПРОСЫ ПО ФИЗИКЕ

выносимые на экзамен (Пкурс, IV семестр, 2007 год)

- 1. Тепловое излучение. Интегральные и спектральные характеристики излучения. Закон Кирхгофа. Закон смещения Вина. Закон Стефана-Больцмана.
- 2. Дискретный характер испускания и поглощения излучения веществом. Формула Планка для равновесного теплового излучения.
- 3. Фотоэффект, его законы. Уравнение Эйнштейна для фотоэффекта. Фотоны. Дуализм волновых и корпускулярных свойств излучения.
- 4. Эффект Комптона. Дуализм волновых и корпускулярных свойств излучения.
- 5. Ядерная модель атома Резерфорда-Бора. Постулаты Бора.
- 6. Корпускулярно-волновой дуализм материи. Гипотеза де Бройля. Опыты по дифракции микрочастиц.
- 7. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять. Принцип суперпозиции в квантовой механике.
- 8. Уравнение Шредингера, его свойства. Вероятностная интерпретация волновой функции.
- 9. Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний.
- 10. Частица в одномерной потенциальной яме с бесконечно высокими стенками. Квантование энергии. Плотность вероятности нахождения частицы для различных состояний.
- 11. Частица в трехмерном потенциальном ящике. Энергетический спектр частицы. Понятие о вырождении энергетических уровней.
- 12. Движение микрочастицы в области одномерного потенциального порога. Случай "высокого" и "низкого" порога.
- 13. Прохождение частицы через потенциальный барьер. Туннельный эффект. Сканирующий туннельный микроскоп.
- 14. Уравнение Шредингера для гармонического осциллятора, анализ его решений.
- 15. Основные постулаты квантовой механики. Представление физических величин операторами. Собственные функции и собственные значения операторов, их связь с результатами измерений.
- 16. Основные постулаты квантовой механики. Представление физических величин операторами. Вычисление средних значений физических величин.
- 17. Условия возможности одновременного измерения разных физических величин в квантовой механике. Соотношение неопределенностей Гейзенберга.
- 18. Уравнение Шредингера для атома водорода. Квантовые числа, их физический смысл.
- 19. Собственные механический и магнитный моменты электрона. Опыт Штерна и Герлаха.
- 20. Орбитальный, спиновой и полный механический и магнитный моменты атома.
- 21. Атом во внешнем магнитном поле. Эффект Зеемана.
- 22. Спонтанное и индуцированное излучение. Коэффициенты "А" и "В" Эйнштейна.
- 23. Принцип работы лазера. Особенности лазерного излучения. Основные типы лазеров, их применение.
- 24. Принцип неразличимости тождественных частиц в квантовой механике. Симметричные и антисимметричные состояния тождественных микрочастиц. Фермионы и бозоны. Принцип Паули.
- 25. Статистика Бозе-Эйнштейна. Функция распределения Бозе-Эйнштейна. Свойства идеального газа бозе-частиц.
- 26. Статистика Ферми-Дирака. Функция распределения Ферми-Дирака. Вырожденный электронный газ. Энергия Ферми.

- 27. Квантовые распределения Ферми-Дирака и Бозе-Эйнштейна. Их предельный переход в классическое распределение Максвелла-Больцмана.
- 28. Работа выхода электрона из металла. Термоэлектронная эмиссия. Формула Ричардсона-Дешмана.
- 29. Эмиссия электронов из металла. Эффект Шоттки. Холодная (автоэлектронная) эмиссия.
- 30. Электроны в периодическом поле кристалла. Образование энергетических зон. Энергетический спектр электронов в модели Кронига-Пенни.
- 31. Зонная теория твердых тел. Структура зон в металлах, полупроводниках и диэлектриках.
- 32. Собственная проводимость полупроводников. Концентрация электронов и дырок в чистых полупроводниках. Температурная зависимость собственной проводимости полупроводников. Уровень Ферми в чистых полупроводниках.
- 33. Примесная проводимость полупроводников. Концентрация основных и неосновных носителей в полупроводниках n-типа. Уровень Ферми примесного полупроводника n-типа. Температурная зависимость проводимости примесного полупроводника n-типа
- 34. Примесная проводимость полупроводников. Концентрация основных и неосновных носителей в полупроводнике р-типа. Уровень Ферми примесного полупроводника р-типа. Температурная зависимость проводимости примесного полупроводника р-типа.
- 35. Фотопроводимость полупроводников. Процессы генерации и рекомбинации носителей заряда.
- 36. Эффект Холла в полупроводниках, его практическое применение.
- 37. Контактные явления в полупроводниках. Р-п переход, его вольт-амперная характеристика.
- 38. Элементарные частицы, их основные характеристики. Симметрия и законы сохранения в мире элементарных частиц.
- 39. Элементарные частицы. Виды взаимодействий элементарных частиц. Классификация частиц. Лептоны и адроны. Кварковая структура адронов.
- 40. Структура атомного ядра. Характеристики ядер: заряд, масса, размеры, энергия связи. Свойства и обменный характер ядерных сил.
- 41. Деление тяжелых ядер, цепные реакции. Термоядерный синтез.
- 42. Радиоактивность. Закон радиоактивного распада. Активность. Естественная и искусственная радиоактивность.
- 43. Радиоактивность. Виды радиоактивных излучений. Эффект Мессбауэра.
- 44. Взаимодействие ядерных излучений с веществом. Детектирование различных излучений. Дозиметрия и защита.
- 45. Квантовые объекты нанотехнологий. Квантовые ямы, квантовые нити, квантовые точки, углеродные нанотрубки. Приборы нанотехнологий. Сканирующие зондовые микроскопы.

Номера задач для экзамена по физике за IV семестр, на основе которых были составлены задачи в экзаменационных билетах

Иродов И.Е., 1988г: 5.293, 6.51, 6.86, 6.91, 6.102, 6.222, 6.225, 6.228, 6.232, 6.233, 6.235, 6.237, 6.241, 6.243, 6.244, 6.245, 6.247, 6.249. Номера этих же задач в задачнике Иродова И.Е.,1998г: 5.19, 5.89, 5.132, 5.137, 5.154, 6.277, 6.280, 6.284, 6.288, 6.289, 6.291, 6.293, 5.245, 5.247, 5.248, 5.249, 5.251, 5.253.

Чертов А.Г., Воробьев А.А., 1988г : 42.10, 45.34, 47.24, 51.2, 51.9, 51.11.