1. Гироскопический момент. Примеры его определения для традиционных, вибро, микромеханических гироскопов

Гироскопический момент. Примеры его определения для традиционных гироскопов:

Начало на странице 12 (11 в книге) со слов:

Замечательныесвойства гироскопа объясняются действием кориолисовых сил инерции, которые называют гироскопическими(жироскопическими) силами.

Дальше тупо катать до слов на странице 16 (15 в книге):

Рассмотрим действие внешнегомомента на трехстепенной гироскоп в кардановом подвесе (рис. 7) с невесомыми рамками...

Для вибро гироскопов

Для камертонного гироскопа – см. стр. 36 (35 в книге)

Для микромеханических гироскопов

Стр. 41 (40) - 43(42)

Замечательные свойства гироскопа объясняются действием кориолисовых сил инерции, которые называют гироскопическими (жироскопическими) силами.

Как известно, кориолисово ускорение \bar{W}_K возникает при сложном движении тела с переносной угловой скоростью $\bar{\varpi}_e$ И относительной линейной скоростью \bar{V}_r (рис. 3).

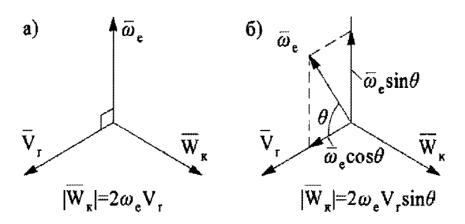


Рис. 3. Кориолисово ускорение:

$$a-\overline{\omega}_e\perp \bar{V}_e$$
 ; $\delta-\overline{\omega}_e\not\perp \bar{V}_r$

Если $\overline{V}_r\perp \overline{\varpi}_e$ (рис. 3, a), то вектор \overline{W}_K перпендикулярен к плоскости, образуемой векторами \overline{V}_r и $\overline{\varpi}_e$, а модуль \overline{W}_K равен

$$\left| \overline{W}_K \right| = 2 \cdot \omega_e \cdot V_r \,. \tag{2}$$

Если существует угол θ между векторами $\overline{V_r}$ и $\overline{\omega}_e$, (рис. 3, 6), то составляющая угловой скорости $\omega_e \cdot \sin \theta$ является причиной возникновения кориолисова ускорения W_K

• Тогда в соответствии с выражением (2) получим

$$W_K = 2 \cdot \omega_e \cdot \sin \theta \cdot V_r$$

Вектор $\overline{W}_{\!\scriptscriptstyle K}$ является удвоенным векторным произведением $\overline{\omega}_e$ и $\overline{V}_{\!\scriptscriptstyle T}$:

$$\overline{W}_{\kappa} = 2\overline{\omega}_e \times \overline{V}_r.$$
 (3)

Кориолисова сила инерции массы m равна $F_{\kappa}=2m\omega_{e}V_{r}\sin\theta$ и направлена противоположно \overline{W}_{κ} .

Возникновение гироскопического момента, обусловленного действием кориолисовых сил инерции, поясним на примере ротора 1, вращающегося с высокой угловой скоростью $\bar{\Omega} = \dot{\phi}$ в корпусе (кожухе) 2 (рис. 4).

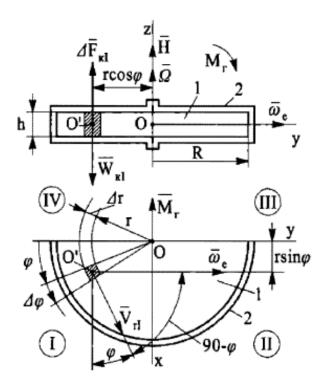


Рис. 4. К выводу формулы гироскопического момента

Выберем систему координат Oxyz, связанную с кожухом, который вращается с угловой скоростью $\overline{\omega}_e$; центр масс ротора находится в т. O, Oxyz — главные центральные оси инерции.

Выделим элементарную массу в квадранте І $\Delta m = \rho h \Delta r \times r \Delta \phi$ (h — высота ротора; ρ — плотность материала), которая участвует в переносном движении с угловой скоростью $\overline{\omega}_e$ и относительной линейной скоростью $|V_r| = r\Omega$ (в относительном движении).

Следовательно, возникают кориолисово ускорение $W_{\rm K} = 2\omega_e V_r \cos \phi = 2\omega_e \Omega r \cos \phi$ и соответствующая кориолисова

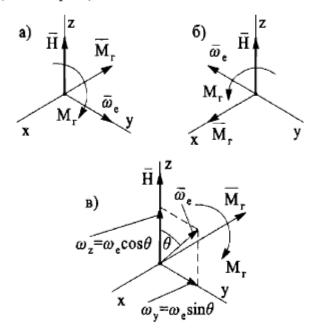
сила инерции $\Delta F_{\rm K} = \Delta m W_{\rm K}$, которая создает моменты вокруг осей Ox и Oy $\Delta M_{\chi} = -\Delta F_{\rm K} r \cos \phi$ и $\Delta M_{\chi} = -\Delta F_{\rm K} r \sin \phi$.

Перейдя от приращений к дифференциалам ($\Delta \to d$) и проинтегрировав, получим

$$\begin{split} M_{x} &= -2\omega_{e}\Omega\rho h\int\limits_{0}^{R}r^{3}dr\int\limits_{0}^{2\pi}cos^{2}\phi d\phi = \\ &= -2\omega_{e}\Omega\rho h\frac{\pi R^{4}}{2} = -\omega_{e}\Omega\frac{mR^{2}}{2} = -C\Omega\omega_{e} = -H\omega_{e}; \\ M_{y} &= 0, \end{split} \tag{4}$$

где $H = C\Omega$ — кинетический момент гироскопа.

Поясним физический смысл возникновения гироскопического момента $M_r = M_x$ быстровращающегося ротора гироскопа, который имеет переносную угловую скорость $\overline{\omega}_e$ (рис. 5) вокруг оси Oy в инерциальном пространстве.


Рис. 5. К пояснению физического смысла гироскопического момента

۵Ē٠

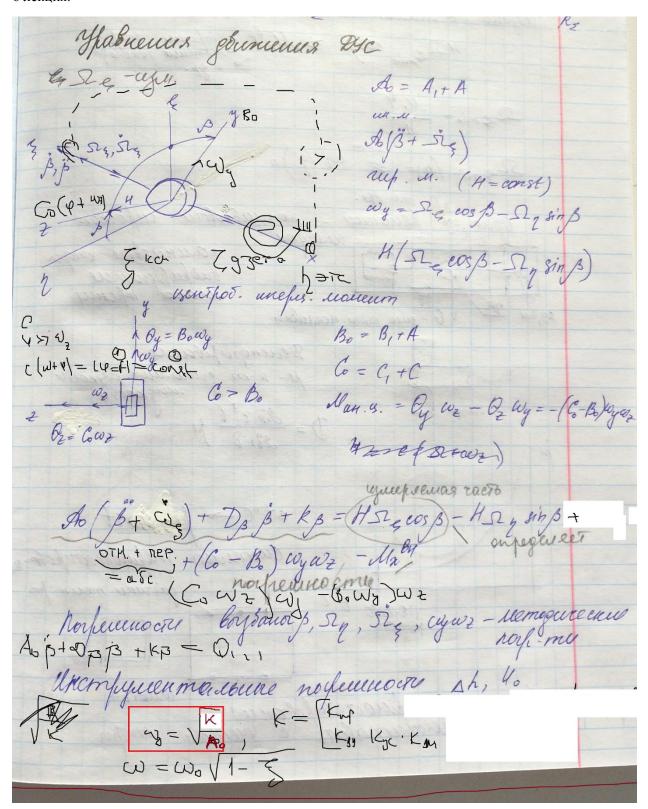
В квадрантах I—IV выделим элементарные массы Δm ротора, относительная линейная скорость которых $V_r = r\Omega$. Кориолисово ускорение массы Δm в квадранте I $W_{\rm Kl} = -2\omega_{\rm e}V_r$, кориолисова сила инерции $\bar{F}_{\rm Kl}$ направлена противоположно $\bar{W}_{\rm Kl}$ $F_{\rm Kl} = \Delta m W_{\rm K}$. Аналогично определяем $\bar{W}_{\rm Kll}$, $\bar{W}_{\rm Kll}$, $\bar{W}_{\rm KlV}$ и соответственно кориолисовы силы инерции $\Delta \bar{F}_{\rm Kll}$, $\Delta \bar{F}_{\rm KlV}$.

Введем обозначение: $|\bar{F}_{\kappa}| = |\bar{F}_{\kappa I} + \bar{F}_{\kappa IV}| = |\bar{F}_{\kappa II} + \bar{F}_{\kappa III}|$.

Видно (см. рис. 5), что кориолисовы силы инерции $\bar{F}_{\rm K}$ создают момент $M_{\rm r}=F_{\rm K}L$, который и называют гироскопическим. Вектор $\bar{M}_{\rm r}$ направлен так, что с его конца видно совмещение вектора \bar{H} кратчайшим путем с вектором $\bar{\omega}_e$ переносной угловой скорости; в рассматриваемом случае $\bar{M}_{\rm r}$ направлен вдоль отрицательной оси Ox.

Рис. 6. К определению гироскопического момента \overline{M}_{r}

На рис. 6 показан случай $\overline{H} \perp \overline{\omega}_e$, $\omega_e > 0$; гироскопический момент \overline{M}_Γ направлен вдоль отрицательной оси Ox; при $\omega_e < 0$ (рис. 6, 6) \overline{M}_Γ направлен вдоль положительной оси Ox (кратчайшее направление совмещения \overline{H} и $\overline{\omega}_e$ — против часовой стрелки, если смотреть с положительной оси Ox). При наличии угла θ между \overline{H} и $\overline{\omega}_e$ составляющая $\overline{\omega}_y = \overline{\omega}_e \sin \theta$ служит причиной возникновения гироскопического момента ($\overline{H} \perp \overline{\omega}_y$)


 $M_{\rm r}=H\omega_y=H\omega_e\sin\theta$, т. е. гироскопический момент $\overline{M}_{\rm r}$ является векторным произведением:

$$\overline{M}_{\Gamma} = \overline{H} \times \overline{\omega}_{e}.$$
 (5)

Гироскопический момент, увеличивая инерционное сопротивление, способствует эффективному сопротивлению гироскопа внешним возмущениям. Рассмотрим действие внешнего

2. **определение омега 0** ДУС – не уверен в ответе, т.к. дальше идет отдельно раздел про ДУС.

6 лекция.

